A method of combining multiple probabilistic classifiers through soft competition on different feature sets

نویسندگان

  • Ke Chen
  • Huisheng Chi
چکیده

A novel method is proposed for combining multiple probabilistic classifiers on different feature sets. In order to achieve the improved classification performance, a generalized finite mixture model is proposed as a linear combination scheme and implemented based on radial basis function networks. In the linear combination scheme, soft competition on different feature sets is adopted as an automatic feature rank mechanism so that different feature sets can be always simultaneously used in an optimal way to determine linear combination weights. For training the linear combination scheme, a learning algorithm is developed based on Expectation—Maximization (EM) algorithm. The proposed method has been applied to a typical real-world problem, viz., speaker identification, in which different feature sets often need consideration simultaneously for robustness. Simulation results show that the proposed method yields good performance in speaker identification. ( 1998 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network

Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...

متن کامل

A Modular Neural Network Architecture for Pattern Classification Based on Different Feature Sets

We propose a novel connectionist method for the use of different feature sets in pattern classification. Unlike traditional methods, e.g., combination of multiple classifiers and use of a composite feature set, our method copes with the problem based on an idea of soft competition on different feature sets developed in our earlier work. An alternative modular neural network architecture is prop...

متن کامل

A NEW MULTIPLE CRITERIA DECISION-MAKING METHOD BASED ON BIPOLAR FUZZY SOFT GRAPHS

In this research study, we present a novel frame work for handling bipolar fuzzy soft information by combining bipolar fuzzy soft sets with graphs. We introduce several basic notions concerning bipolar fuzzy soft graphs and investigate some related properties. We also consider the application of the bipolar fuzzy soft graphs. In particular, three efficient algorithms are developed to solve mult...

متن کامل

Experiments with Classifier Combining Rules

A large experiment on combining classifiers is reported and discussed. It includes, both, the combination of different classifiers on the same feature set and the combination of classifiers on different feature sets. Various fixed and trained combining rules are used. It is shown that there is no overall winning combining rule and that bad classifiers as well as bad feature sets may contain val...

متن کامل

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998